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Article History Abstract 

Original Research Article This study developed an enhanced mountain gazelle optimized convolutional neural network 

for a face-based gender recognition system. The specific objectives formulate an Enhanced 

Mountain Gazelle Optimizer Technique (EMGO) using Chaotic Exponential Map function, 

and design an optimized Convolutional Neural Network Technique for face-based gender 

recognition using the formulated EMGO. The acquisition of MP4 and AVI video datasets were 

obtained as primary data from YouTube. It comprises 5,330 face samples extracted from the 

YouTube, including 2,480 male and 2,850 female faces, with each video contributing between 

554 and 823 detected faces per gender category. Face detection was carried out using the 

Viola–Jones algorithm, followed by preprocessing operations these are resizing, cropping, 

grayscale conversion, and adjustment of brightness and contrast to enhance image quality. 

The result shows the false positive rate (FPR) of the three models CNN, MGO-CNN, and 

EMGO-CNN across different threshold values. It is evident that the baseline CNN records the 

highest FPR values, starting at 4.00% at threshold 0.2 and only reducing slightly to 3.75% at 

threshold 0.75. Also, it was shown the specificity performance of CNN, MGO-CNN, and 

EMGO-CNN at various threshold values. The baseline CNN maintains a stable but 

comparatively lower specificity, ranging from 96.00% at a threshold of 0.2 to 96.25% at a 

threshold of 0.75. This indicates that CNN is less capable of correctly identifying true 

negatives, meaning it tends to misclassify some negative samples as positive. In conclusion, 

the developed EMGO-CNN model has demonstrated superior performance compared to 

traditional CNN and MGO-CNN approaches for face-based gender recognition system. By 

integrating enhancements into the Mountain Gazelle Optimization algorithm, the EMGO 

framework improved exploration and exploitation capabilities, thereby preventing premature 

convergence and enabling a more reliable selection of optimal CNN hyperparameters. 

Therefore, the EMGO-CNN model is recommended for real-world deployment in gender 

recognition systems where accuracy, speed, and robustness are critical.  
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1.0 Introduction 
 

Humans can automatically tell what gender someone is by 

looking at their face, and researchers and developers are 

very interested in figuring out how to make computers do 

the same thing. Automated gender recognition is very 

important in many different fields, especially in intelligent 

social robotics, where the ability to recognize soft biometric 

traits allows for adaptive interaction, personalized 

conversation, and a better understanding of machine 

intelligence during human-robot interactions. Digital 

signage is another popular use for gender-aware systems. 
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These systems can make ads more effective by changing the 

content that is shown according to the gender of the viewer. 

In these situations, static visual elements could be 

substituted with responsive ads that change in real time 

based on the gender traits of the people looking at the 

display (Greco et al., 2020). 

Human-computer interaction, security, and surveillance are 

some of the areas where gender recognition is important. 

Soft biometrics, which offer additional details about an 

individual's identity, includes gender information. 

Additionally, it can improve facial recognition ability, 

which has more advantages than other biometric systems 

and is regarded as one of the most practical biometric 

characteristics. Because of this, it is widely used in a variety 

of applications to provide advanced analysis in human-

computer interaction. Due to its value in offering safe and 

reliable security for businesses, organisations, face 

monitoring, and airports, gender categorisation has been 

studied for decades, garnered significant interest from 

researchers, and quickly grown (Rasheed et al., 2022). 
 

With the advancements in deep learning techniques, 

especially Convolution Neural Network (CNN), there has 

been considerable progress in the accuracy of gender 

recognition. However, the real-time application of CNN for 

gender recognition from video remains a challenging task 

due to the high computational complexity and resource 

requirements (Goceri and Ozbey, 2021). 
 

Convolutional Neural Networks (CNNs) have 

demonstrated significant efficacy in various image 

recognition and classification tasks, attributable to their 

capacity to autonomously extract hierarchical features from 

unprocessed visual data. This capacity makes CNNs quite 

good at recognizing faces, which is a task that requires 

finding complicated and nuanced patterns. Recent deep 

learning research shows that CNN architectures are widely 

used for many different image classification tasks. 

However, there is no one network configuration that works 

best for all tasks. Instead, choosing an architecture that fits 

the problem domain is what makes performance good 

(Bacanin et al., 2021). There are a lot of hyperparameters 

that affect how a CNN works, and it is both time-consuming 

and impracticable to find the best combination by hand. 

Because the search space is so big, hyperparameter 

optimization is often seen as an NP-hard task. Metaheuristic 

methods have been shown to work well and be quick 

(Bacanin et al., 2021).  
 

Mountain Gazelle Optimizer (MGO) is a metaheuristic 

optimization algorithm inspired by the behaviour of 

mountain gazelles in the wild. The MGO algorithm mimics 

the behaviour of mountain gazelles as they search for food 

in mountainous regions. The algorithm has two main 

phases: the search phase and the chase phase. In the search 

phase, each gazelle moves randomly in a different direction 

to explore the search space. In the chase phase, the gazelles 

converge towards the best solution found so far. The MGO 

algorithm uses a set of four parameters to control the search 

behaviour of the gazelles: the jump strength, the scent 

strength, the sprint strength, and the rest strength. These 

parameters are updated during the optimization process 

based on the performance of the gazelles 
 

However, MGO suffers from several limitations, including 

premature convergence in high-dimensional search spaces, 

imbalance between exploration and exploitation, and high 

sensitivity to parameter settings, which negatively affect its 

robustness and performance (Abdollahzadeh et al., 2024; 

Khodadadi et al., 2023). These shortcomings limit MGO’s 

effectiveness in solving real-world optimization tasks, as it 

often becomes trapped in local optima and fails to maintain 

search diversity (Khazadadi et al., 2024). To overcome 

these issues, the integration of chaotic maps, particularly 

the Chaotic Exponential Map (CEM), was developed to 

improve ergodicity, randomness, and sensitivity to initial 

conditions (Wang et al., 2014; Abdollahpour et al., 2024). 

Hence, the need for this study. 

The objectives of the research are to formulate an Enhanced 

Mountain Gazelle Optimizer Technique (EMGO) using 

Chaotic Exponential Map function and design an optimized 

Convolutional Neural Network Technique for face-based 

gender recognition using the formulated EMGO 
 

2.0 Related Works 
 

Chen et al. (2017) developed the Multi-Branch Voting CNN 

(MBV-CNN), a framework intended for gender 

categorization in real-time video streams. The method starts 

with finding and extracting faces from video frames, and 

then it uses adaptive brightness normalization to deal with 

changes in lighting. After processing, each facial image is 

evaluated by three parallel CNN branches. A majority 

voting technique is used to reduce the impacts of motion 

blur and occlusion, which makes classification more 

reliable. Experimental evaluation showed that the 

suggested framework was far better than current methods, 

with average accuracies of 98.11% on benchmark datasets 

and 95.36% on the real-world Gender Classification for 

Live Videos (GCLV) dataset. 
 

Agbo-Ajala and Viriri (2020) suggested a CNN-based 

architecture designed to extract discriminative 

representations from unconstrained facial pictures for 

concurrent age and gender categorization. To deal with the 

considerable variability that comes with real-world facial 

data, the study used a strong preprocessing pipeline and 

pretraining on the massive IMDb-WIKI dataset, which has 

noisy and unfiltered labels. To make the model more broad 

and less likely to overfit, regularization methods including 
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dropout and data augmentation were used. The results 

showed how important it is to properly plan network 

architectures and fine-tune hyperparameters. The suggested 

model was able to correctly classify 84.8% of age groups 

and 89.7% of genders. 
 

Gornale et al. (2020) investigated a multimodal gender 

recognition methodology utilizing deep features derived 

from a pre-trained AlexNet architecture. The suggested 

system has 20 layers, with convolutional layers with 

different receptive field sizes followed by fully linked 

layers for classification. A lot of testing was done on the 

SDUMLA-HMT multimodal database, which has 15,052 

photos. The results showed that this method was more 

accurate than other methods that had been described in the 

literature. 
 

Greco et al. (2020) introduced a lightweight CNN model for 

facial gender recognition that achieves nearly state-of-the-

art accuracy while substantially lowering computational 

expenses—by roughly a factor of five. The study also did a 

sensitivity analysis to see how changes to the architecture 

affect the balance between speed and accuracy of 

recognition. Comparative assessments against prevalent 

efficient CNN architectures on benchmark datasets, 

including LFW, MIVIA-Gender, IMDb-WIKI, and 

Adience, validated the suggested design's efficacy and 

efficiency. 
 

Thangaraj et al. (2021) utilized Haar cascade classifiers for 

real-time facial identification, subsequently employing the 

Inception V3 network for gender classification. The IMDb 

dataset was used for training and testing, and validation was 

done in real time as well. The system was able to correctly 

classify gender 97.4% of the time. Benkaddour et al. (2021) 

also built a system that can guess a person's age and gender 

in real time by employing different CNN architectures with 

different depths and filter settings. Validation on the IMDb 

and WIKI datasets showed that CNN-based models greatly 

improved recognition performance, with considerable gains 

in both accuracy and system efficiency. 
 

Adhinata and Junaidi (2022) examined the application of 

the FaceNet architecture for facial feature extraction with 

various supervised learning algorithms, including K-

Nearest Neighbors (KNN), Support Vector Machines 

(SVM), and Decision Trees, for gender classification in 

video data. The experimental results demonstrated that the 

combination of FaceNet features with the KNN classifier 

yielded the optimal performance, attaining an accuracy of 

95.75% and a frame-level processing time of 0.059 

seconds, utilizing a balanced dataset of 23,000 training 

samples per gender. 
 

Vasavi et al. (2022) suggested an automated gender 

prediction framework utilizing a combination of VGG16 

and Wide ResNet-34 architectures. The method used facial 

key-point detection to get features, and then it used 

reconstruction techniques like the Simultaneous Algebraic 

Reconstruction Technique (SART) to sample. The 

algorithm put people into groups based on their gender 

(male, female, or other) and was tested using metrics like 

mean absolute error and entropy loss. When compared to 

Smaller VGGNet, VGG16, and Wide ResNet models, it 

showed better performance, with accuracy gains of 2% to 

8%. 
 

Rasheed et al. (2022) investigated the impact of facial 

masks on gender categorization performance using various 

pre-trained deep learning models, such as DenseNet121, 

DenseNet169, ResNet50, ResNet101, Xception, 

InceptionV3, MobileNetV2, EfficientNetB0, and VGG16. 

Two experimental procedures were implemented: one 

entailed training with both masked and unmasked facial 

images, while the other concentrated solely on masked 

faces. The results showed that DenseNet121 and Xception 

did well with both techniques, while InceptionV3 had the 

best accuracy of 98.75% when using a mixed dataset. In the 

masked-only situation, EfficientNetB0 performed better 

than the others, with an accuracy of 97.27%. The results 

also showed that wearing face masks has a big effect on 

how well state-of-the-art gender classification models 

work. 
 

Foggia et al. (2023) developed a real-time user profile 

system utilizing a multi-task convolutional neural network 

to concurrently identify gender, age, ethnicity, and 

emotional states from facial photos. The research assessed 

three tailored designs featuring backbone networks based 

on MobileNet, ResNet, and SENet, integrating 

convolutional layers, residual connections, and attention 

mechanisms. A customized training approach was utilized 

to tackle issues associated with absent labels, class 

imbalance, and loss function disparity via label masking, 

batch balancing, and weighted loss optimization. The 

suggested multi-task models achieved similar accuracy to 

single-task CNNs, but they were 2.5 to 4 times faster and 

used 2 to 4 times less memory. This makes them good for 

use in smart cameras and embedded systems. 
 

Dammak et al. (2023) put out a hybrid method for 

estimating a person's gender based on their face that 

combines deep learning-based global features with hand-

crafted local descriptors. To make things work better, a 

Minimum Redundancy Maximum Relevance (mRMR) 

feature selection technique was used to keep the most useful 

features while getting rid of unnecessary ones. Tests on the 

Images of Groups and FERET datasets showed that the 

suggested method strikes a good compromise between 

speed and accuracy, proving that it works well for 
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estimating gender in real-world situations where there are 

no limits. 
 

Karabiyik et al. (2025) introduced MGO as an effective 

meta-heuristic approach for optimizing ANN parameters. 

Experimental result was validated across diverse 

benchmark dataset and demonstrated MGO’s superiority 

over several state-of-the-art algorithm are Particle Swarm 

Optimization (PSO), Artificial Algae Algorithm (AAA), 

Cuckoo Search Algorithm (CSA), Whale Optimization 

Algorithm (WOA), Bat Optimization Algorithm (BOA), 

Firefly Algorithm (FA), Jaya Algorithm (JA) and Artificial 

Hummingbird Algorithm (AHA). Statistical analysis using 

the Wilcoxon Signed-Rank Test revealed statistical 

improvement in accuracy. However, application of CNN 

was not explored which does not allowed comprehensive 

evaluation performance in handling complex problems, 

particularly in domain which include image recognition, 

natural language processing and time-series forecasting. 
 

The considered related works failed to focus on the 

development of techniques for efficient domain adaptation, 

enabling face detection models trained on one dataset to be 

applied to different real-world scenarios and also could not 

investigate how to optimize gender recognition CNN model 

for real time system, where energy efficiency and resources 

constraints are critical factors. This work explored novel 

optimization method tailored to Convolutional Neural 

Network for a face-based gender recognition system that 

can accurately predict the gender of a person in a live video 

feed using Enhanced Mountain Gazelle Optimizer. 
 

3.0 Materials and methods 
 

The acquisition of MP4 and AVI video datasets were 

obtained as primary data from YouTube. It comprises 5,330 

face samples extracted from the YouTube, including 2,480 

male and 2,850 female faces, with each video contributing 

between 554 and 823 detected faces per gender category. 

Face detection was carried out using the Viola–Jones 

algorithm, followed by preprocessing operations these are 

resizing, cropping, grayscale conversion, and adjustment of 

brightness and contrast to enhance image quality. In 

developing an Enhanced Mountain Gazelle Optimization 

Convolutional Neural Network (EMGO-CNN) for a face-

based gender recognition system, the following stages were 

involved. 

i. Face Acquisition: The first step was to get MP4 and 

AVI video files from YouTube that were available to 

the public. The original, uncompressed versions of 

these videos were downloaded. They were taken at a 

size of 1200 × 720 pixels. After that, the Viola-Jones 

face detection algorithm in MATLAB was used to 

break each video sequence down into individual 

image frames. This made it easy to get facial frames 

for further processing. 
 

ii. Face Processing: Face Detected from the acquired 

video frame using Viola-Jones Algorithm, was 

processed by resizing the image, cropping the image, 

conversion to grayscale and adjusting the brightness 

and contrast. These preprocessing steps are essential 

for standardizing input quality and ensuring that the 

optimized CNN could effectively learn gender-

specific facial patterns when guided by the enhanced 

Mountain Gazelle Optimizer. Using a video capture 

interface, the obtained video data were turned into a 

time series of raw RGB frames with a spatial 

resolution of 120 × 160 pixels. After that, each RGB 

frame was changed into the YUV color space. Then, 

a difference image (D) was made by finding the 

absolute pixel-wise difference between two frames 

to show changes over time. In this representation, the 

Y channel stored brightness (grayscale) data, 

whereas the U and V channels stored color data. 
 

iii. Formulation of EMGO:  Using MGO enhanced with 

the Chaotic Exponential Map (CEM) function to 

select CNN hyperparameters which include weights, 

number of filters, filter size and batch size. This 

enhancement was introduced to improve 

convergence speed, maintain diversity in the search 

space, and prevent premature stagnation of the 

optimization process.  
 

iv. Design of EMGO-CNN: Using the Enhanced 

Mountain Gazelle Optimized Convolutional Neural 

Network (EMGO-CNN), where the CEM ensures 

more efficient exploration and exploitation during 

optimization.  
  

Figure 2 shows how the Convolutional Neural Network 

works with the Enhanced Mountain Gazelle Optimizer 

(CNN-EMGO). The training and optimization step is the 

most important part of the system. At this point, the EMGO 

algorithm starts optimizing the parameters as the CNN is 

being set up. Algorithm 5 lists the pre-set parameters that 

are used to set up the optimizer. It also uses a chaotic 

exponential mapping mechanism to improve the diversity 

of the population and the efficiency of the search. This 

initialization method creates candidate gazelle locations 

and their fitness values. Each position is a possible solution 

that is determined by a certain set of CNN parameters. As a 

result, each gazelle setup is a complete CNN training 

instance, which lets the optimization process gradually 

increase network parameters for better performance. 
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Figure 2: shows the scheme of gender recognition procedure with the integration of chaotic exponential map function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Flowchart of Enhanced Mountain Gazelle Optimizer based Convolutional Neural Network (EMGO-CNN) 
 

Algorithm 5: Formulation of Enhanced Mountain Gazelle Optimizer 

Parameter definitions summary 

• N - population size (100). 

• 𝑻max  - max iterations (500). 

• 𝑺max , 𝑺min − step extremes; e.g., 1.0,0.001. 

• 𝜶, 𝜷 - CEM params; e.g., 𝜶 = 𝟑. 𝟗, 𝜷 = 𝟓. 

• 𝒛𝟎 - initial CEM seed in (𝟎, 𝟏), not 0 . 

• 𝝀 - exploitation intensity (0.5-2.0). 

• 𝜸 - exploratory perturbation scale (small fraction of variable range). 
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• 𝒑𝟎 - base jump probability (e.g. 0.2). 

• 𝜿 - jump amplitude scalar (e.g. 0.1). 

• 𝜷𝑳 - Levy exponent for Levy flights 1.5. 

 

Input 

{𝑵, 𝑻𝐦𝐚𝐱, 𝒇(⋅), 𝐋, 𝐔, 𝑺𝐦𝐚𝐱, 𝑺𝐦𝐢𝐧, 𝜶, 𝜷, 𝒛𝟎, 𝝀, 𝜸, 𝒑𝟎, 𝜿}. 

Initialization ( 𝐭 = 𝟎 ) 

1. For 𝒊 = 𝟏, … , 𝑵 initialize each component: 

𝒙𝒊,𝒋(𝟎) = 𝑳𝒋 + 𝐫𝐚𝐧𝐝𝒊𝒋(𝑼𝒋 − 𝑳𝒋), 

where rand  𝒊𝒋 may be replaced by chaotic numbers seeded from CEM iterates for better spread. 

2. Evaluate 𝑭𝒊(𝟎) = 𝒇(𝐱𝒊(𝟎)). 

3. Set 𝒙best (𝟎) = 𝐚𝐫𝐠 𝐦𝐢𝐧
𝒊

 𝑭𝒊(𝟎). 

4. Initialize chaotic state 𝒛𝟎 ∈ (𝟎, 𝟏). 

5. Set 𝒕 ← 𝟎. 

Main loop: for 𝒕 = 𝟎 to 𝑻𝐦𝐚𝐱 − 𝟏 

1. Generate chaotic number 𝒛𝒕+𝟏 = (𝜶𝒆−𝜷𝒛𝒕)𝐦𝐨𝐝𝟏. Set 𝒓(𝒕) = 𝒛𝒕+𝟏. Optionally produce vectorized chaotic 

values per particle or component by further iterating the map. 

2. Compute adaptive step 𝑺(𝒕) = 𝑺max −
𝑺max −𝑺min 

𝑻max 

𝒕. 

3. For each gazelle 𝒊 = 𝟏 … 𝑵 : 

a. Randomly decide operator using chaotic thresholds: 

• If 𝒓(𝒕) > 𝟎. 𝟔 (example) → exploration. 

• If 𝟎. 𝟐 < 𝒓(𝒕) ≤ 𝟎. 𝟔 → exploitation. 

• If 𝒓(𝒕) ≤ 𝟎. 𝟐 → jump/escape. 

(These thresholds can be tuned.) 

b. Exploration update: 

𝐱𝒊
′ = 𝐱𝒊(𝒕) + 𝑺(𝒕)𝒓(𝒕)(𝐱best (𝒕) − 𝐱𝒌(𝒕)) + 𝜸𝚫, 

where 𝐱𝒌 is a randomly selected peer and 𝚫 is chaotic vector. 

c. Exploitation update: 

𝜼(𝒕) = 𝝀𝒓(𝒕)(𝟏 − 𝒕/𝑻𝐦𝐚𝐱)

𝐱𝒊
′ = 𝐱𝒊(𝒕) + 𝜼(𝒕)(𝐱best (𝒕) − 𝐱𝒊(𝒕)) + 𝜹chaos .

 

d. Jump/escape update (with chaos-based probability): 

𝐱𝒊
′ = 𝐱𝒊(𝒕) + 𝜿(𝐔 − 𝐋) ⊙ (𝐯 − 𝟎. 𝟓), 

where 𝐯 are chaotic numbers or a Levy draw. 

e. Enforce bounds on 𝐱𝒊
′. 

f. Evaluate 𝑭𝒊
′ = 𝒇(𝐱𝒊

′). If 𝑭𝒊
′ < 𝑭𝒊(𝒕) then set 𝐱𝒊(𝒕 + 𝟏) = 𝐱𝒊

′, 𝑭𝒊(𝒕 + 𝟏) = 𝑭𝒊
′ else keep old: 

𝐱𝒊(𝒕 + 𝟏) = 𝐱𝒊(𝒕), 𝑭𝒊(𝒕 + 𝟏) = 𝑭𝒊(𝒕). 

4. Update global best: 

𝐱best (𝒕 + 𝟏) = 𝐚𝐫𝐠 𝐦𝐢𝐧
𝒊

 𝑭𝒊(𝒕 + 𝟏). 

5. 𝒕 ← 𝒕 + 𝟏. Continue. 

Termination 

Return 𝐱best (𝑻max ) and 𝒇(𝐱best ). Optionally return trace of best fitness per iteration. 

 

4.0 Results and discussion 

The face-based gender recognition system was developed 

using an Enhanced Mountain Gazelle Optimization 

integrated with a Convolutional Neural Network (EMGO-

CNN). As presented in Table 1, the dataset comprised a 

total of 5,330 face samples extracted from four video 

recordings, with 2,480 male and 2,850 female faces 

distributed across the clips. Each video contributed between 

554 and 823 detected faces per gender category, thereby 

ensuring a balanced representation of male and female 

samples. The dataset was further processed and organized 

to support efficient training and evaluation of the developed 

model, with images standardized for consistent input into 

the CNN framework. 
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Table 1: Frame Dataset Extracted from Video 

Gender Video Frame1 Video Frame2 Video Frame3 Video Frame4 Total 

Male: 560 554 722 644 2480 

Female: 709 613 823 705 2850 

Total 1269 1167 1545 1349 5330 

 

The developed system was implemented in a MATLAB-

based Graphical User Interface (GUI), as illustrated in 

Figure 3. The GUI provides an interactive platform for 

performing gender recognition tasks, enabling users to 

select input videos, train and test the model, classify 

detected faces, and visualize results in real-time. For each 

detected face, the system automatically labels the gender 

category, with results displayed alongside bounding boxes 

on the video frames. The selection of CNN 

hyperparameters for the developed face-based gender 

recognition system using the Enhanced Mountain Gazelle 

Optimization (EMGO) algorithm was executed over 30 

iterations, with emphasis on optimizing weights, number of 

filters, filter size, and batch size. During the initial 

iterations, the fitness values were relatively high, with 

iteration 1 yielding a weight of 0.8509, 128 filters, a 5×5 

filter size, and a batch size of 64×64, resulting in a fitness 

value of 0.2004. As the iterations progressed, EMGO 

effectively refined the hyperparameters, producing a 

significant reduction in fitness values. By iteration 10, the 

model had converged to a configuration of 128 filters with 

a 7×7 filter size and a batch size of 128×128, achieving the 

lowest fitness value of 0.0087. This convergence trend 

indicates that EMGO was able to efficiently balance 

exploration and exploitation in the search space, thereby 

identifying a more effective set of hyperparameters for 

CNN training. Compared to the standard MGO-CNN, 

which achieved its lowest fitness value of 0.0352 at 

iteration 17, the EMGO-CNN demonstrated superior 

optimization capability, leading to improved learning 

efficiency and model generalization as summarized in 

Table 2. 
 

 
Figure 3: Graphical User Interface (GUI) of the Developed Real-Time Face Recognition System 

 

Table 2: CNN Hyperparameters selection process with EMGO-CNN 

Iteration  Weights Number of Filters Filter Size Batch Size Fitness Value 

1  0.8509 128 5x5 64x64 0.2004 

2  0.3791 64 7x7 16x16 0.33 

3  0.3109 32 5x5 64x64 0.7702 

4  0.684 256 5x5 128x128 0.6417 

5  0.8774 128 7x7 64x64 0.3567 

6  0.5366 128 3x3 32x32 0.212 

7  1.1779 128 3x3 32x32 0.3453 

8  0.8376 128 5x5 64x64 0.4965 

9  0.6031 64 3x3 64x64 0.5033 
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10  0.5009 128 7x7 128x128 0.0087 

11  0.4447 32 5x5 16x16 0.576 

12  0.8884 256 5x5 128x128 0.0566 

13  0.5544 256 3x3 32x32 0.0435 

14  0.1186 256 5x5 128x128 0.7882 

15  0.5078 64 5x5 32x32 0.2669 

16  0.8987 32 3x3 16x16 0.6877 

17  0.2599 128 3x3 32x32 0.3342 

18  0.2518 32 5x5 16x16 0.7868 

19  0.6613 128 7x7 32x32 0.0313 

20  0.6616 64 5x5 64x64 0.4991 

21  0.7796 256 5x5 64x64 0.22 

22  1.0268 128 5x5 128x128 0.7969 

23  0.8831 32 7x7 128x128 0.4169 

24  0.7527 128 3x3 16x16 0.1779 

25  0.8808 128 7x7 32x32 0.2679 

26  0.4214 256 7x7 32x32 0.737 

27  0.4661 32 5x5 32x32 0.5057 

28  0.3125 256 7x7 16x16 0.6117 

29  0.3878 256 7x7 128x128 0.7292 

30  0.7756 128 5x5 32x32 0.7824 
 

The result in figure 4, illustrates the false positive rate (FPR) 

of the three models CNN, MGO-CNN, and EMGO-CNN 

across different threshold values. It is evident that the baseline 

CNN records the highest FPR values, starting at 4.00% at 

threshold 0.2 and only reducing slightly to 3.75% at threshold 

0.75. This shows that the traditional CNN struggles with 

controlling false positives, which negatively impacts the 

reliability of its predictions in face-based gender recognition 

tasks. A high FPR implies that the model is frequently 

misclassifying negative samples as positive, which 

undermines classification confidence. 

In contrast, MGO-CNN demonstrates a marked improvement, 

with its FPR consistently lower than that of CNN across all 

thresholds. Starting at 2.95% at threshold 0.2, the FPR 

gradually drops to 2.67% at threshold 0.75. This reduction can 

be attributed to the optimization capability introduced by the 

Mountain Gazelle Optimization algorithm, which enhances 

CNN’s parameter tuning and reduces unnecessary 

misclassifications. However, although MGO-CNN shows 

progress over CNN, the improvement remains moderate when 

compared to the enhanced model. 
 

EMGO-CNN, clearly outperforms both CNN and MGO-CNN 

by achieving the lowest FPR values across all thresholds. At 

threshold 0.2, it records just 1.68%, and by threshold 0.75 the 

FPR decreases further to 0.70%. This substantial reduction 

highlights the strength of the chaotic exponential map function 

in refining the optimization process, enabling the model to 

effectively distinguish between positive and negative classes. 

The lower FPR signifies fewer false alarms and greater 

robustness in classification, which is critical in gender 

recognition systems. Therefore, as depicted in Figure 4, 

EMGO-CNN establishes itself as the most reliable model with 

respect to minimizing false positives. 
 

The developed EMGO-CNN model shows a significant 

advancement in minimizing the false positive rate (FPR) for 

face-based gender recognition, outperforming classical CNN 

and even Mountain Gazelle Optimization (MGO)-augmented 

CNN variants. Comparative studies in recent literature 

corroborate these improvements: optimization enhanced CNN 

models consistently achieve reduced FPRs, mirroring the trend 

observed across biometric classification tasks (Ibrahim et al., 

2025). The introduction of chaotic maps, particularly the 

exponential map in EMGO-CNN, plays a critical role by 

enriching the parameter tuning process, allowing for a more 

refined search of the solution space and improving model 

robustness and classification reliability (Ibrahim et al., 2025; 

Rather et al., 2022). Such hybrid and chaotic optimization 

schemes have been empirically shown to outperform non-

optimized or traditionally optimized CNN architectures by 

effectively reducing misclassification and false alarms. 

Achieving an FPR as low as 0.70–1.68% with EMGO-CNN 

underscores the importance of low false positives in practical 

biometric identification systems, where reliability and 

trustworthiness are paramount for deployment. This aligns 

with broader findings that stress the practical significance of 

optimization-enhanced CNN models in decreasing false 

positives, thereby strengthening the reliability of real-world 

gender recognition and face-based biometric systems (Zhang 

et al., 2024; Patel & Singh, 2024). 
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Figure 4: Comparison of FPR(%) for CNN, MGO-CNN, and EMGO-CNN across different threshold values. 

 

The result in Figure 4, shows the specificity performance 

of CNN, MGO-CNN, and EMGO-CNN at various 

threshold values. The baseline CNN maintains a stable 

but comparatively lower specificity, ranging from 

96.00% at a threshold of 0.2 to 96.25% at a threshold of 

0.75. This indicates that CNN is less capable of correctly 

identifying true negatives, meaning it tends to 

misclassify some negative samples as positive. While the 

improvement across thresholds is minimal, the 

consistently lower specificity highlights CNN’s 

limitations in reliably distinguishing between negative 

and positive classes. 
 

The integration of the Mountain Gazelle Optimization 

(MGO) into CNN improves the specificity significantly. 

As illustrated in Figure 5, MGO-CNN records specificity 

values of 97.05% at threshold 0.2, gradually increasing 

to 97.33% at threshold 0.75. This consistent 

improvement over the baseline CNN demonstrates the 

positive effect of optimization on network parameter 

tuning, enabling the model to better reject false positives. 

However, although the gains are noticeable, MGO-CNN 

still falls short compared to the performance of the 

enhanced model. 
 

EMGO-CNN demonstrates the highest specificity 

among the three models, starting at 98.32% and peaking 

at 99.30% as the threshold increases. This remarkable 

improvement shows that the chaotic exponential map 

enhancement significantly strengthens the optimization 

process, allowing EMGO-CNN to almost perfectly 

discriminate true negatives. The extremely low rate of 

false positive assignments combined with high 

specificity reflects the robustness of EMGO-CNN in 

gender classification tasks. As seen in Figure 4, this 

model consistently surpasses both CNN and MGO-

CNN, confirming its superiority in controlling 

classification errors on negative samples. 
 

The specificity improvements achieved by the EMGO-

CNN model notably surpass those reported for 

conventional CNN and Mountain Gazelle Optimization-

based CNN (MGO-CNN) models, reflecting a 

significant enhancement in true negative discrimination 

critical for biometric and gender recognition reliability. 

Comparable studies affirm that optimization-enhanced 

CNNs, particularly those integrating metaheuristic 

algorithms, substantially improve specificity by 

effectively minimizing false positives. The integration of 

a chaotic exponential map in EMGO-CNN further 

advances parameter fine-tuning, enabling superior 

separation of negative classes from positive ones and 

thus achieving specificity rates as high as 99.30%, which 

is substantially higher than the typical CNN specificity 

range of 96–97%. Such high specificity is vital for  
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Figure 5: Comparison of Specificity (%) for CNN, MGO-CNN, and EMGO-CNN across different threshold values. 
 

5.0 Conclusion and recommendations 
 

The developed EMGO-CNN model has demonstrated 

superior performance compared to traditional CNN and 

MGO-CNN approaches for face-based gender recognition 

system. By integrating enhancements into the Mountain 

Gazelle Optimization algorithm, the EMGO framework 

improved exploration and exploitation capabilities, thereby 

preventing premature convergence and enabling a more 

reliable selection of optimal CNN hyperparameters. This 

optimization process allowed fine-tuning of critical factors 

which include weight, number of filters, filter size and 

batch size, which directly contributed to significant gains in 

classification accuracy, sensitivity, specificity, and 

precision. Compared to CNN and MGO-CNN, the EMGO-

CNN consistently achieved higher recognition rates while 

maintaining reduced false positive occurrences, validating 

its robustness and generalization across different datasets. 
 

Based on the remarkable results obtained, the EMGO-CNN 

model is recommended for real-world deployment in 

gender recognition systems where accuracy, speed, and 

robustness are critical. For future research, it is 

recommended that the EMGO-CNN model be tested on 

larger, more diverse, and unconstrained datasets to further 

validate its adaptability across different demographic and 

environmental conditions.  
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