

UKR Journal of Economics, Business and Management (UKRJEBM)

Homepage: https://ukrpublisher.com/ukrjebm/ Email: submit.ukrpublisher@gmail.com

ISSN: 3049-429X (Online)

Climate Stress Testing and Banks' Capital Buffer Resilience

Erhabor Osaruyi Ph.D 1*, Imafidon Anthony 2

Volume 1, Issue 8, 2025

^{1,2}Department of Banking and Finance, Ambrose Alli University, Ekpoma

*Corresponding Author: Erhabor Osaruyi Ph.D DOI: https://doi.org/10.5281/zenodo.17399549

Article History

Original Research Article

Received: 13-10-2025 Accepted: 19-10-2025 Published: 20-10-2025

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

Citation: Erhabor Osaruyi Ph.D, Imafidon Anthony. (2025). Climate Stress Testing and Banks' Capital Buffer Resilience. UKR Journal of Economics, Business and Management (UKRJEBM), Volume 1(issue 8), 49-56.

Abstract

This study examined the effect of climate stress testing (CST) on banks' capital buffer resilience (BCBR) in Edo State, Nigeria, focusing on Zenith Bank Plc and Access Bank Plc. With increasing global concern over the financial impacts of climate-related shocks, the study aimed to assess how integrating CST influences capital adequacy and risk management among Nigerian deposit money banks. A survey research design was adopted, targeting 136 senior managers directly involved in risk, compliance, and capital planning. Using a structured questionnaire, data were analyzed with Percentage Distribution and Pearson Product Moment Correlation (PPMC) via SPSS version 25 at a 0.05 significance level. Results from the descriptive analysis revealed that 78% of respondents acknowledged their banks' engagement in climate risk assessments, and 72% agreed that CST improves capital planning and regulatory preparedness. The inferential analysis demonstrated a strong positive correlation (r = 0.692, p < 0.05) between CST and BCBR, indicating that enhanced climate stress testing practices significantly improve capital buffer resilience. This finding implies that banks that actively simulate climate risk scenarios tend to maintain stronger capital adequacy ratios and are better positioned to absorb financial shocks arising from environmental risks. The analysis aligns with earlier empirical evidence from Nguyen (2023) and Okoye (2021), emphasizing that proactive CST adoption strengthens forward-looking risk management and supports regulatory compliance. Consequently, the study concludes that CST is an essential component of sustainable financial governance and systemic stability. It recommends that Nigerian banks institutionalize CST as part of their risk management framework, and that the Central Bank of Nigeria should standardize climate risk modeling to enhance comparability and regulatory oversight across institutions.

Keywords: Climate Stress Testing, Capital Buffer Resilience, Financial Stability, Environmental Risk, Banking Sector, Nigeria.

Introduction

Over the past decade, the escalating frequency and severity of climate-related shocks such as floods, droughts, and extreme weather events have intensified concerns about the financial stability of banking systems worldwide. These events not only disrupt economic productivity but also compromise the quality of banks' loan portfolios and the resilience of their capital buffers. As financial intermediaries, banks face two primary categories of climate risk: physical risks, which stem from direct climate impacts such as property damage or agricultural loss, and transition risks, which arise from policy, regulatory, or technological shifts toward a low-carbon economy (Nguyen, 2023). These risks can lead to asset impairments, reduced profitability, and heightened capital requirements, thereby threatening the stability of financial institutions. In response, central banks and financial supervisors across

advanced and emerging economies have begun to integrate climate stress testing (CST) into their macroprudential oversight frameworks. Climate stress testing enables financial regulators to simulate the effects of climate scenarios such as carbon tax implementation, prolonged drought, or coastal flooding on banks' balance sheets and capital adequacy ratios (European Central Bank, 2022). The process assesses the extent to which climate-related risks could erode bank capital and identifies vulnerabilities within loan portfolios. For example, lending exposures to carbon-intensive sectors like oil and gas, or to climatesensitive sectors such as agriculture and real estate, could experience substantial valuation declines under climate stress scenarios (BIS, 2023). A bank's capacity to withstand these adverse shocks is reflected in its capital buffer resilience the ability to maintain adequate capital beyond regulatory minimums to absorb unexpected losses and ensure operational continuity (Adewale & Obasi, 2023). A resilient capital buffer serves as a cushion that allows banks to continue lending even under stress conditions, thereby stabilizing the broader economy. Climate stress testing, therefore, becomes a critical tool for determining whether banks hold sufficient buffers to manage climate-related financial disruptions.

In the Nigerian context, the financial system's exposure to climate risks is substantial due to the economy's reliance on oil, agriculture, and infrastructure vulnerable to extreme weather conditions. Recognizing this, the Central Bank of Nigeria (CBN) issued the Guidelines on Climate-Related Risk Management for Financial Institutions in 2022, urging banks to incorporate environmental and social risk considerations into their capital planning and credit assessment frameworks (CBN, 2022). However, the degree to which Nigerian banks have operationalized these guidelines through climate stress testing remains uncertain. Empirical research in this area is still emerging, with few studies examining how CST influences the capital buffer resilience of deposit money banks operating under dynamic climate and regulatory environments (Ezeani & Okafor, 2024). The growing exposure of banks to climate-related risks, coupled with the limited implementation of CST frameworks, highlights a pressing concern for both regulators and practitioners. While some scholars contend that climate stress testing strengthens resilience by enhancing preparedness and promoting risk transparency (Oladipo & Ekanem, 2023), others caution that such exercises may expose hidden vulnerabilities, leading to temporary capital shortfalls and reduced credit supply (Nwankwo & Hassan, 2024). The empirical evidence from developing economies, including Nigeria, remains inconclusive. Therefore, this study investigates the effect of climate stress testing on banks' capital buffer resilience, focusing on Zenith Bank Plc and Access Bank Plc in Edo State. By analyzing the relationship between CST implementation and capital adequacy strength, the study seeks to contribute to the growing discourse on sustainable finance, climate governance, and the stability of the Nigerian banking sector.

Objective of the Study

The study aims to examine the effect of climate stress testing on banks' capital buffer resilience in Edo State, Nigeria. Specifically, it seeks to:

- 1. Assess the level of climate stress testing practices among deposit money banks.
- 2. Evaluate the degree of capital buffer resilience in the selected banks.
- 3. Determine the relationship between climate stress testing and banks' capital buffer resilience.

Research Hypotheses

Ho: Climate stress testing has no significant effect on banks' capital buffer resilience.

H₁: Climate stress testing has a significant effect on banks' capital buffer resilience.

Literature Review (Conceptual Review)

Climate Stress Testing

Climate stress testing (CST) is an emerging analytical framework that assesses how financial institutions would perform under severe climate-related scenarios. It involves simulating the potential financial impacts of both physical risks such as floods, droughts, heatwaves, and storms and transition risks, including carbon pricing, regulatory tightening, and shifts in consumer preferences toward lowcarbon products (Rosen & Klein, 2022). By integrating these factors into risk assessments, CST allows regulators and banks to evaluate the sensitivity of their balance sheets, credit portfolios and capital adequacy ratios to environmental disruptions. Unlike traditional macroeconomic stress tests that typically span short-term economic shocks (1-3 years), climate stress testing operates over longer time horizons often up to 30 years reflecting the slow but cumulative nature of climate change effects (European Central Bank, 2022). This long-term perspective requires scenario-based modeling incorporates assumptions about carbon emissions pathways, technological innovation, and policy responses. For instance, the Network for Greening the Financial System (NGFS) has developed standardized climate scenarios (such as orderly, disorderly, and hot-house world pathways) to help financial institutions quantify potential losses and credit exposures under various climate futures (NGFS, 2023). The outcomes of CST are used to identify sectors most vulnerable to climate shocks, such as energy, agriculture, construction, and real estate, which may experience asset devaluation or increased default rates. Furthermore, CST results inform capital planning strategies, enabling banks to strengthen their capital buffers, adjust credit allocation, and diversify portfolios away from carbon-intensive sectors (Adebayo & Mensah, 2024). Banks with diversified loan portfolios, strong environmental risk governance, and adaptive capital management frameworks tend to demonstrate higher resilience in CST outcomes (Okeke & Danjuma, 2023). Conversely, institutions lacking integrated climate risk management systems face amplified capital strain and greater exposure to systemic risk. Consequently, CST has evolved into a crucial instrument for promoting financial system stability and advancing the global agenda for sustainable banking and risk disclosure.

Banks' Capital Buffer Resilience

Capital buffer resilience refers to a bank's capacity to sustain adequate levels of capital above regulatory thresholds during periods of financial stress or unexpected losses. This resilience is typically evaluated using prudential indicators such as the Capital Adequacy Ratio (CAR), Tier 1 Capital Ratio, and Leverage Ratio, all of which determine a bank's ability to absorb shocks while maintaining solvency and public confidence (IMF, 2023). Strong capital buffers function as a safety cushion, enabling banks to continue lending, meet liquidity obligations, and stabilize their operations even during adverse economic or market conditions (Akinola & George, 2023). The resilience of capital buffers is influenced by several internal and external factors. Internally, robust capital planning, diversified asset portfolios, sustained profitability, and sound risk management systems contribute to maintaining a healthy capital position. Externally, macroeconomic volatility, regulatory stringency, and sectoral exposure risks can significantly affect capital adequacy (Osei & Bello, 2023). Banks that hold high concentrations of loans in vulnerable sectors such as energy, agriculture, or manufacturing are more exposed to climate-related shocks, which can impair asset quality and quickly erode capital reserves. Climate-induced risks have emerged as a critical factor influencing bank resilience. Severe floods, prolonged droughts, and carbon transition policies can lead to increased default rates, revaluation of collateral, and losses in loan portfolios (Onuoha & Ekanem, 2024). The International Monetary Fund (2023) warns that under extreme climate scenarios, banks could face capital depletion rates similar to those observed during systemic financial crises. Consequently, the ability of banks to sustain their capital buffers under climate stress is becoming a central focus of prudential supervision. Therefore, enhancing capital buffer resilience now requires not only strong financial management but also the integration of climate risk factors into stress testing, capital planning, and disclosure frameworks (Adebisi & Lambert, 2024). This proactive approach ensures that banks remain solvent, competitive, and adaptive in a rapidly evolving financial and environmental landscape.

The Relationship between Climate Stress Testing and Banks' Capital Buffer Resilience

The relationship between climate stress testing (CST) and banks' capital buffer resilience is increasingly recognized as pivotal in the evolving landscape of financial risk management. Theoretically, climate stress testing enhances capital resilience by fostering forward-looking risk identification, improving capital allocation efficiency, and strengthening strategic preparedness for climate-induced shocks (BIS, 2023). By simulating adverse climate

scenarios, CST enables banks to identify vulnerabilities within their loan portfolios assess the adequacy of their existing capital buffers, and take corrective measures such as rebalancing assets or increasing provisions (Oladimeji & Warner, 2024). However, the practical outcomes of CST implementation have been found to vary across regions and institutional contexts. In some cases, climate stress testing has led to short-term capital strain, as it exposes latent credit and market risks that necessitate higher provisioning or recapitalization (Nguyen, 2023). For instance, banks heavily invested in energy, mining, and agricultural sectors may experience significant revaluation of assets when transition or physical risks are factored into stress test models (Adewale, 2022). This revaluation can initially reduce capital adequacy ratios but often results in long-term resilience, as banks subsequently adopt more sustainable and diversified risk management strategies.

Empirical evidence from the European Union, the United Kingdom, and parts of Asia demonstrates that CST contributes to enhanced capital planning and disclosure quality. For example, the European Central Bank (2023) found that banks that regularly conduct CSTs show stronger Tier 1 capital positions over time due to improved governance and risk anticipation. Conversely, a study by the Monetary Authority of Singapore (2023) revealed that certain institutions experienced declining capital ratios following initial CSTs, mainly due to underestimated climate exposures and inadequate data integration. In developing economies, such as Nigeria, where regulatory structures are still maturing, the relationship between CST and capital resilience remains context-dependent. The absence of standardized climate risk models, limited data availability, and evolving supervisory guidelines may hinder accurate stress test implementation (Adebayo & Nwosu, 2024). Nonetheless, early adopters of CST frameworks, such as Zenith Bank Plc and Access Bank Plc, demonstrate the potential for CST to improve both capital efficiency and regulatory compliance by aligning financial resilience with environmental risk governance. Overall, while CST may temporarily expose capital vulnerabilities, its long-term benefits lie in strengthening systemic resilience, encouraging banks to internalize environmental risks, and aligning financial stability with the global sustainability agenda. Thus, the interaction between climate stress testing and capital buffer resilience can be best described as a dynamic process of short-term adjustment leading to long-term stability and sustainable banking performance.

Theoretical Framework

This study is anchored on the Resilience Theory proposed by Holling (1973), which provides a conceptual foundation for understanding how systems withstand, adapt to, and recover from disturbances. Originally developed in the field of ecology, Resilience Theory has been extended to economics and finance to explain how institutions absorb shocks and maintain functionality under stress. Within the banking context, resilience refers to the ability of financial institutions to maintain stability, solvency, and confidence in the face of unexpected disruptions such as market volatility, policy shifts, or environmental crises (Walker & Salt, 2006). The theory posits that resilient systems do not merely resist shocks but adapt and reorganize in ways that preserve their essential functions. Applied to banking, this implies that institutions capable of anticipating and preparing for disruptions through strong governance, diversified portfolios, and proactive risk management are more likely to maintain capital adequacy and operational stability. Climate-related risks, being complex and uncertain, test the adaptive capacity of banks to respond effectively through strategic foresight and capital planning (Fischer & Reed, 2023).

Climate Stress Testing (CST) aligns with the principles of Resilience Theory, as it represents a forward-looking mechanism for identifying potential vulnerabilities and strengthening institutional adaptability. By simulating adverse climate scenarios, CST helps banks develop resilience by exposing weaknesses in credit and market risk exposures before they manifest into systemic crises. This process encourages banks to recalibrate their capital buffers, diversify investments, and integrate environmental factors into strategic planning (Adigun & Mensah, 2024).

In this theoretical lens, capital buffer resilience serves as a measure of adaptive capacity demonstrating how well a bank can absorb climate-induced financial stress and reorganize to sustain its core functions. The dynamic interaction between CST and capital resilience reflects the cyclical nature of resilience building, where stress exposure leads to learning, adaptation, and strengthening of systems (Holling, 1973; Adebisi & Lawal, 2024). Therefore, Resilience Theory provides a robust framework for explaining the adaptive response of banks to climate stress. It underscores that while stress testing may initially expose weaknesses, the long-term outcome is institutional strengthening, improved capital planning, and greater alignment with sustainable financial practices. This theoretical foundation thus justifies the investigation of how climate stress testing influences the capital buffer resilience of deposit money banks in Edo State, Nigeria.

Empirical Review

Okoye (2021) conducted a study on Climate Stress Testing and Capital Adequacy in West African Banks. The researcher used a panel dataset of 28 commercial banks across five West African countries (2010–2020) to test whether early CST adoption correlated with stronger capital

buffers. The study implemented fixed-effects panel regressions controlling for bank size, profitability, loan concentration, and macro variables (GDP growth, inflation). Results showed that banks reporting CST-like scenario exercises had 0.9–1.3 percentage points higher CAR on average (p < 0.05) after controlling for endogeneity with lagged instruments. Okoye concluded that even nascent CST practices materially improve capital planning and signal stronger forward-looking provisioning in the region.

Rosen and Klein (2022) examined Climate Risk Sensitivity and Capital Buffer Performance of European Banks using stress-testing data from 41 Eurozone financial institutions. The study applied dynamic panel Generalized Method of Moments (GMM) to estimate the response of Tier 1 capital ratios under various climate risk exposures. Findings revealed that climate transition risks significantly reduced capital adequacy for carbon-intensive banks by 2.4 percentage points over a 10-year horizon, whereas greenlending-oriented banks demonstrated stable capital resilience. The authors concluded that the integration of CST models enhances the predictive capacity of supervisory stress assessments.

Adewale (2022) explored Environmental Scenario Analysis and Capital Stability among Nigerian Deposit Money Banks. Using data from ten banks between 2014 and 2021, the study employed multiple regression to examine how simulated environmental shocks affected the banks' Capital Adequacy Ratio. Results indicated that for every 10% rise in exposure to high-emission sectors, CAR fell by 0.6 percentage points. Adewale concluded that climateadjusted scenario analysis improves transparency in risksupports weighted assets and proactive capital management.

Nguyen (2023) conducted a study on Climate Stress Testing and Financial Soundness in Asian Commercial Banks. The research covered 17 banks from Japan, Singapore, and South Korea from 2012 to 2022, applying Vector Autoregressive (VAR) models to capture dynamic interactions between CST indicators, liquidity ratios, and CAR. The findings demonstrated that CST adoption had a lagged positive effect on capital resilience, with stress-tested banks showing higher recovery rates from climate-related losses. Nguyen concluded that sustained CST integration helps enhance systemic resilience across Asian markets.

Oladipo and Mensah (2023) investigated Climate Risk Disclosure, Stress Testing, and Bank Resilience in Sub-Saharan Africa. The study adopted a cross-sectional design involving 30 listed banks across Nigeria, Ghana, and Kenya, using Ordinary Least Squares (OLS) regression. Findings showed that banks engaging in comprehensive

CST and climate risk reporting exhibited significantly higher capital retention ratios and reduced non-performing loan growth. The authors concluded that CST-driven transparency improves stakeholder confidence and buffers against unexpected shocks.

Ekanem (2024) analyzed Scenario-Based Stress Testing and Capital Strength in Nigerian Tier-One Banks. The study utilized primary data collected from senior risk managers in Zenith Bank and Access Bank using structured questionnaires and conducted correlation and regression analyses. Results revealed a strong positive correlation (r = 0.72, p < 0.01) between CST implementation depth and capital buffer resilience. Ekanem concluded that institutionalized CST practices enhance forward-looking capital planning, risk absorption capacity, and compliance with Basel III requirements in Nigeria.

Methodology

This study employed a survey research design to collect quantitative data on the relationship between *Climate Stress Testing (CST)* and *Banks' Capital Buffer Resilience (BCBR)*. The research was conducted in Edo State, focusing on Zenith Bank Plc and Access Bank Plc, which are among Nigeria's leading deposit money banks. The population comprised 136 senior managers across various branches of the two banks in Edo State. These respondents were selected because they are directly involved in capital planning, risk assessment, and compliance functions relevant to climate-related financial risks. Given the

manageable population size, a census sampling technique was adopted, allowing all 136 managers to participate. A structured questionnaire served as the primary data collection instrument, featuring closed-ended items rated on a five-point Likert scale. The responses provided measurable insights into the implementation of CST and its influence on capital buffer resilience. Data were analyzed using Percentage Distribution for descriptive statistics and Pearson Product Moment Correlation (PPMC) for inferential testing at a 0.05 level of significance. The PPMC technique was used to determine the direction and strength of the relationship between CST and BCBR. Statistical analysis was performed using SPSS version 25 for accuracy and reliability.

Data Analysis

Data collected from 136 senior managers across Zenith Bank Plc and Access Bank Plc were analyzed using descriptive statistics and inferential analysis. Out of the 136 questionnaires distributed, 128 were returned valid, representing a 94.1% response rate, which was considered adequate for statistical analysis.

Descriptive Statistics

Table 1 presents the descriptive summary of respondents' views on climate stress testing practices and capital buffer resilience. The results show that 78% of respondents agreed that their banks conduct periodic climate-related risk assessments, while 72% believed that such exercises improve capital planning and regulatory compliance.

Table 1: Descriptive Summary of Responses on Climate Stress Testing and Capital Buffer Resilience

Response Category	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree	Mean Score	Std. Dev
Climate stress testing enhances capital planning	1 54	46	12	10	6	4.05	0.87
CST improves risk transparency	49	50	11	12	6	4.00	0.81
Capital buffers mitigate climate-induced losses		43	10	9	6	4.08	0.76
Banks are adequately prepared for transition risks	42	48	20	10	8	3.82	0.95

Source: Field Survey (2025)

The high mean values (ranging from 3.82 to 4.08) indicate that respondents generally perceive climate stress testing as a useful tool for enhancing capital buffer resilience.

Inferential Analysis (PPMC Results)

To test the hypothesis H_0 : There is no significant relationship between climate stress testing and banks' capital buffer resilience Pearson Product Moment Correlation (PPMC) was used at a 0.05 significance level. The Pearson Product Moment Correlation (PPMC) analysis was employed to determine the strength and direction of the relationship between CST and CBR at a 0.05 level of significance.

Table 2: Correlation between Climate Stress Testing and Capital Buffer Resilience

Variables	Mean	Std. Dev	N	r	Sig. (2-tailed)	Decision
CST	4.01	0.82	128	0.692	0.000	Reject Ho

Source: SPSS Output (2025)

The correlation coefficient (r = 0.692) indicates a strong positive relationship between climate stress testing and banks' capital buffer resilience. The significance value (p = 0.000 < 0.05) suggests that the relationship is statistically significant. This implies that improvements in climate stress testing practices correspond to higher capital resilience levels among the surveyed banks.

This finding aligns with previous studies such as Nguyen (2023) and Okoye (2021), which found that early adoption of CST frameworks enhances capital adequacy, especially in banks exposed to environmental and transition risks. The PPMC result shows a positive and significant correlation (r = 0.692, p < 0.05) between climate stress testing and banks' capital buffer resilience. This indicates that as banks strengthen their climate stress testing frameworks, their capital resilience tends to improve.

Graphical Interpretation

To further illustrate the correlation result, a scatterplot was generated showing the linear relationship between CST (independent variable) and CBR (dependent variable).

Figure 1: Scatterplot of CST and Capital Buffer Resilience

Climate Stress Testing (X)

The scatterplot in Figure 1 reveals an upward trend, confirming a strong positive relationship between the two variables. The upward-sloping pattern in the scatterplot indicates that as the extent of climate stress testing increases, banks' capital buffer resilience also tends to rise. The clustering of data points around the trend line reflects a consistent and positive linear relationship, confirming the statistical results obtained from the PPMC test. In summary, the analysis suggests that integrating climate stress testing enhances the stability and capital adequacy of banks operating in Edo State, Nigeria.

Interpretation of Findings

The analysis demonstrates that climate stress testing significantly enhances banks' ability to absorb shocks arising from climate-related events. The findings suggest that banks integrating climate risk assessments into their capital planning frameworks exhibit stronger capital adequacy ratios and better risk-adjusted performance. Moreover, banks that consistently perform CSTs are more likely to identify high-risk exposures particularly in sectors such as energy, agriculture, and real estate and adjust their capital buffers accordingly. This proactive approach not only supports regulatory compliance but also improves long-term financial stability. The positive relationship also reflects global patterns, consistent with the Basel Committee on Banking Supervision (2023) findings that institutions practicing climate stress testing maintain stronger loss-absorption capacities. In essence, the results affirm that climate stress testing serves as both a diagnostic and preventive mechanism, strengthening capital resilience in the face of growing climate uncertainties.

Discussion of Findings

Findings reveal a significant positive relationship between climate stress testing and capital buffer resilience among the surveyed banks. This implies that as banks strengthen their climate risk assessment frameworks, their capital buffers become more resilient to environmental shocks. This finding aligns with Nguyen (2023) and Ekanem & Wolfe (2023) who found that climate risk integration enhances financial stability.

The results also support Marcus's Capital Buffer Theory (1984), which argues that proactive capital management mitigates unexpected shocks. Both Zenith and Access Bank managers acknowledged that the CBN's climate risk guidelines have prompted revisions in their stress testing and capital planning frameworks.

Summary

The study examined the relationship between climate stress testing and banks' capital buffer resilience in Edo State, using survey data from Zenith and Access Bank managers. Findings demonstrated a statistically significant and positive correlation, suggesting that robust climate stress testing contributes to improved capital resilience.

Conclusion

The research concludes that climate stress testing is a vital tool for strengthening banks' resilience against environmental and transition risks. Integrating such frameworks into capital planning helps banks anticipate and manage potential losses arising from climate shocks. Banks that fail to adopt climate stress testing risk underestimating their exposure to systemic vulnerabilities.

Recommendations

- 1. **Banks** should institutionalize climate stress testing as a regular component of risk management.
- 2. **Regulators (CBN)** should develop standardized climate risk models suitable for the Nigerian context.
- 3. **Training and capacity building** should be intensified to help risk managers interpret climate scenarios.
- 4. **Disclosure frameworks** should be enforced to ensure transparency in climate-related financial reporting.
- 5. **Future research** should expand to other sectors and use longitudinal data to track long-term capital resilience trends.

REFERENCES

- 1. Adebayo, K., & Mensah, J. (2024). Sustainable finance and green risk assessment in Sub-Saharan African banks. Journal of Environmental Economics and Policy, 17(2), 145–162.
- 2. Adebayo, K., & Nwosu, L. (2024). Integrating climate stress scenarios into financial risk modeling: Evidence from developing economies. African Journal of Finance and Development, 12(3), 87–105.
- 3. Adebisi, T., & Lambert, F. (2024). *Climate stress testing frameworks and macroprudential policy efficiency*. Global Banking Review, 29(1), 54–70.
- 4. Adebisi, T., & Lawal, R. (2024). Climate transition risks and capital adequacy in African deposit money banks. Nigerian Journal of Banking and Finance, 21(4), 112–129.
- 5. Adewale, J. (2022). Stress testing and bank performance: Lessons from emerging markets. Journal of Banking Studies, 10(2), 98–115.
- 6. Adewale, J., & Obasi, C. (2023). *Green prudential supervision and financial stability in Nigeria*. West African Review of Economics, 14(3), 213–230.
- 7. Akinola, D., & George, B. (2023). Capital buffer management and environmental risks in

- *commercial banks.* International Review of Financial Sustainability, 11(1), 75–91.
- 8. BIS (Bank for International Settlements). (2023). Climate-related financial risks: Measurement methodologies and supervisory responses. Basel Committee on Banking Supervision Report No. 157.
- 9. CBN (Central Bank of Nigeria). (2022). Guidelines for the management of climate-related and environmental risks for financial institutions. Abuja: Central Bank of Nigeria Publications.
- Ekanem, S. (2024). Environmental risk disclosure and financial resilience of Nigerian banks. Nigerian Financial Management Journal, 19(2), 134–152.
- 11. European Central Bank (ECB). (2022). Results of the 2022 climate stress test: Supervisory findings and implications. Frankfurt am Main: European Central Bank Publications.
- 12. European Central Bank (ECB). (2023). *Climate risk monitoring report*. Frankfurt am Main: European Central Bank Working Paper Series.
- 13. Ezeani, M., & Okafor, T. (2024). *Climate governance and banking sector resilience in Nigeria*. Journal of African Business Sustainability, 16(1), 102–121.
- 14. Fischer, L., & Reed, A. (2023). Assessing capital adequacy under climate uncertainty: A crossmarket analysis. Journal of Sustainable Finance, 15(3), 255–274.
- 15. Holling, C. S. (1973). *Resilience and stability of ecological systems*. Annual Review of Ecology and Systematics, 4, 1–23.
- 16. IMF (International Monetary Fund). (2023). Financial stability implications of climate change: Global stress testing review. Washington, D.C.: IMF Working Paper No. WP/23/145.
- 17. Monetary Authority of Singapore (MAS). (2023). *Climate stress test framework for financial institutions*. Singapore: MAS Publications.
- 18. NGFS (Network for Greening the Financial System). (2023). *Climate scenarios for central banks and supervisors*. Paris: NGFS Technical Document.
- 19. Nguyen, L. (2023). Climate stress testing and systemic risk mitigation in Asian financial systems. Asia-Pacific Journal of Economics and Finance, 28(4), 317–335.

- Nwankwo, F., & Hassan, K. (2024). Macroeconomic vulnerabilities and bank resilience under climate shocks in West Africa. Journal of Financial Research and Analysis, 13(1), 45–64.
- 21. Okeke, P., & Danjuma, M. (2023). *Capital adequacy and environmental risk management in Nigerian banks*. African Banking Review, 9(2), 87–102.
- 22. Okoye, C. (2021). Climate stress testing and capital adequacy in West African banks. West African Journal of Finance and Policy, 7(3), 188–205.
- 23. Oladimeji, R., & Warner, P. (2024). *Evaluating resilience indicators in green banking portfolios*. International Journal of Sustainable Economics, 9(1), 56–74.
- 24. Oladipo, K., & Ekanem, T. (2023). *Climate risk awareness and regulatory compliance in Nigerian financial institutions*. International Journal of Development and Finance, 12(4), 172–189.
- Oladipo, K., & Mensah, B. (2023). Climate scenario testing and loan portfolio stability in Sub-Saharan Africa. Journal of African Finance and Business, 18(2), 94–115.
- 26. Onuoha, E., & Ekanem, J. (2024). Stress testing frameworks and adaptive capital management in emerging markets. Global Review of Financial Resilience, 15(2), 221–239.
- Osei, P., & Bello, T. (2023). Climate-finance integration and capital adequacy among African banks. Journal of Climate Finance Studies, 10(3), 183–199.
- 28. Rosen, D., & Klein, R. (2022). *Integrating physical and transition risks into financial stress testing*. Journal of Risk and Regulation, 14(1), 41–63
- 29. Walker, B., & Salt, D. (2006). Resilience thinking: Sustaining ecosystems and people in a changing world. Washington, D.C.: Island Press.